Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
4.
Ann N Y Acad Sci ; 1534(1): 69-93, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38532631

RESUMO

The Hadley circulation (HC) is a global-scale atmospheric feature with air descending in the subtropics and ascending in the tropics, which plays a fundamental role in Earth's climate because it transports energy polewards and moisture equatorwards. Theoretically, as a consequence of anthropogenic climate change, the HC is expected to expand polewards, while indications on the HC strength are equivocal, as weakening and strengthening are expected in response to different mechanisms. In fact, there is a general agreement among reanalyses and climate simulations that the HC has significantly widened in the last four decades and it will continue widening in the future, but there is no consensus on past and future changes of the HC strength. Substantial uncertainties are produced by the effects of natural variability, structural deficiencies in climate models and reanalyses, and the influence of other forcing factors, such as anthropogenic aerosols, black carbon, and stratospheric and tropospheric ozone. The global HC can be decomposed into three regional HCs, associated with ascending motion above Equatorial Africa, the Maritime Continent, and Equatorial America, which have evolved differently during the last decades. Climate projections suggest a generalized expansion in the Southern Hemisphere, but a complex regional expansion/contraction pattern in the Northern Hemisphere.


Assuntos
Ozônio , Humanos , Ozônio/química , Mudança Climática , Modelos Climáticos
5.
Bull Entomol Res ; 114(1): 8-21, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38235528

RESUMO

Mosquito-borne disease is a significant public health issue and within Australia Ross River virus (RRV) is the most reported. This study combines a mechanistic model of mosquito development for two mosquito vectors; Aedes vigilax and Aedes camptorhynchus, with climate projections from three climate models for two Representative Concentration Pathways (RCPs), to examine the possible effects of climate change and sea-level rise on a temperate tidal saltmarsh habitat in Perth, Western Australia. The projections were run under no accretion and accretion scenarios using a known mosquito habitat as a case study. This improves our understanding of the possible implications of sea-level rise, accretion and climate change for mosquito control programmes for similar habitats across temperate tidal areas found in Southwest Western Australia. The output of the model indicate that the proportion of the year mosquitoes are active increases. Population abundances of the two Aedes species increase markedly. The main drivers of changes in mosquito population abundances are increases in the frequency of inundation of the tidal wetland and size of the area inundated, increased minimum water temperature, and decreased daily temperature fluctuations as water depth increases due to sea level changes, particularly under the model with no accretion. The effects on mosquito populations are more marked for RCP 8.5 when compared to RCP 4.5 but were consistent among the three climate change models. The results indicate that Ae. vigilax is likely to be the most abundant species in 2030 and 2050, but that by 2070 Aedes camptorhynchus may become the more abundant species. This increase would put considerable pressure on existing mosquito control programmes and increase the risk of mosquito-borne disease and nuisance biting to the local community, and planning to mitigate these potential impacts should commence now.


Assuntos
Aedes , Culicidae , Animais , Austrália Ocidental , Modelos Climáticos , Mudança Climática , Água
6.
Integr Environ Assess Manag ; 20(2): 367-383, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38084033

RESUMO

The Society of Environmental Toxicology and Chemistry (SETAC) convened a Pellston workshop in 2022 to examine how information on climate change could be better incorporated into the ecological risk assessment (ERA) process for chemicals as well as other environmental stressors. A major impetus for this workshop is that climate change can affect components of ecological risks in multiple direct and indirect ways, including the use patterns and environmental exposure pathways of chemical stressors such as pesticides, the toxicity of chemicals in receiving environments, and the vulnerability of species of concern related to habitat quality and use. This article explores a modeling approach for integrating climate model projections into the assessment of near- and long-term ecological risks, developed in collaboration with climate scientists. State-of-the-art global climate modeling and downscaling techniques may enable climate projections at scales appropriate for the study area. It is, however, also important to realize the limitations of individual global climate models and make use of climate model ensembles represented by statistical properties. Here, we present a probabilistic modeling approach aiming to combine projected climatic variables as well as the associated uncertainties from climate model ensembles in conjunction with ERA pathways. We draw upon three examples of ERA that utilized Bayesian networks for this purpose and that also represent methodological advancements for better prediction of future risks to ecosystems. We envision that the modeling approach developed from this international collaboration will contribute to better assessment and management of risks from chemical stressors in a changing climate. Integr Environ Assess Manag 2024;20:367-383. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Modelos Climáticos , Ecossistema , Teorema de Bayes , Mudança Climática , Ecotoxicologia , Medição de Risco
7.
Integr Environ Assess Manag ; 20(2): 359-366, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38124219

RESUMO

The impacts of global climate change are not yet well integrated with the estimates of the impacts of chemicals on the environment. This is evidenced by the lack of consideration in national or international reports that evaluate the impacts of climate change and chemicals on ecosystems and the relatively few peer-reviewed publications that have focused on this interaction. In response, a 2011 Pellston Workshop® was held on this issue and resulted in seven publications in Environmental Toxicology and Chemistry. Yet, these publications did not move the field toward climate change and chemicals as important factors together in research or policy-making. Here, we summarize the outcomes of a second Pellston Workshop® on this topic held in 2022 that included climate scientists, environmental toxicologists, chemists, and ecological risk assessors from 14 countries and various sectors. Participants were charged with assessing where climate models can be applied to evaluating potential exposure and ecological effects at geographical and temporal scales suitable for ecological risk assessment, and thereby be incorporated into adaptive risk management strategies. We highlight results from the workshop's five publications included in the special series "Incorporating Global Climate Change into Ecological Risk Assessments: Strategies, Methods and Examples." We end this summary with the overall conclusions and recommendations from participants. Integr Environ Assess Manag 2024;20:359-366. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Poluentes Ambientais , Humanos , Poluentes Ambientais/análise , Ecossistema , Modelos Climáticos , Mudança Climática , Ecotoxicologia , Medição de Risco/métodos , Gestão de Riscos
8.
Nature ; 625(7996): 722-727, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110573

RESUMO

Ecosystems generate a wide range of benefits for humans, including some market goods as well as other benefits that are not directly reflected in market activity1. Climate change will alter the distribution of ecosystems around the world and change the flow of these benefits2,3. However, the specific implications of ecosystem changes for human welfare remain unclear, as they depend on the nature of these changes, the value of the affected benefits and the extent to which communities rely on natural systems for their well-being4. Here we estimate country-level changes in economic production and the value of non-market ecosystem benefits resulting from climate-change-induced shifts in terrestrial vegetation cover, as projected by dynamic global vegetation models (DGVMs) driven by general circulation climate models. Our results show that the annual population-weighted mean global flow of non-market ecosystem benefits valued in the wealth accounts of the World Bank will be reduced by 9.2% in 2100 under the Shared Socioeconomic Pathway SSP2-6.0 with respect to the baseline no climate change scenario and that the global population-weighted average change in gross domestic product (GDP) by 2100 is -1.3% of the baseline GDP. Because lower-income countries are more reliant on natural capital, these GDP effects are regressive. Approximately 90% of these damages are borne by the poorest 50% of countries and regions, whereas the wealthiest 10% experience only 2% of these losses.


Assuntos
Mudança Climática , Países Desenvolvidos , Países em Desenvolvimento , Ecossistema , Produto Interno Bruto , Mudança Climática/economia , Mudança Climática/estatística & dados numéricos , Modelos Climáticos , Países Desenvolvidos/economia , Países em Desenvolvimento/economia , Plantas , Densidade Demográfica , Fatores Socioeconômicos
10.
Nature ; 622(7983): 528-536, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37853149

RESUMO

Melting of the Greenland ice sheet (GrIS) in response to anthropogenic global warming poses a severe threat in terms of global sea-level rise (SLR)1. Modelling and palaeoclimate evidence suggest that rapidly increasing temperatures in the Arctic can trigger positive feedback mechanisms for the GrIS, leading to self-sustained melting2-4, and the GrIS has been shown to permit several stable states5. Critical transitions are expected when the global mean temperature (GMT) crosses specific thresholds, with substantial hysteresis between the stable states6. Here we use two independent ice-sheet models to investigate the impact of different overshoot scenarios with varying peak and convergence temperatures for a broad range of warming and subsequent cooling rates. Our results show that the maximum GMT and the time span of overshooting given GMT targets are critical in determining GrIS stability. We find a threshold GMT between 1.7 °C and 2.3 °C above preindustrial levels for an abrupt ice-sheet loss. GrIS loss can be substantially mitigated, even for maximum GMTs of 6 °C or more above preindustrial levels, if the GMT is subsequently reduced to less than 1.5 °C above preindustrial levels within a few centuries. However, our results also show that even temporarily overshooting the temperature threshold, without a transition to a new ice-sheet state, still leads to a peak in SLR of up to several metres.


Assuntos
Modelos Climáticos , Congelamento , Aquecimento Global , Camada de Gelo , Elevação do Nível do Mar , Temperatura , Aquecimento Global/estatística & dados numéricos , Groenlândia , Camada de Gelo/química , Fatores de Tempo
11.
PLoS One ; 18(10): e0292250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37796770

RESUMO

Polar lows (PLs), which are intense maritime polar mesoscale cyclones, are associated with severe weather conditions. Due to their small size and rapid development, PL forecasting remains a challenge. Convection-permitting models are adequate to forecast PLs since, compared to coarser models, they provide a better representation of convection as well as surface and near-surface processes. A PL that formed over the Norwegian Sea on 25 March 2019 was simulated using the convection-permitting Canadian Regional Climate Model version 6 (CRCM6/GEM4, using a grid mesh of 2.5 km) driven by the reanalysis ERA5. The objectives of this study were to quantify the impact of the initial conditions on the simulation of the PL, and to assess the skill of the CRCM6/GEM4 at reproducing the PL. The results show that the skill of the CRCM6/GEM4 at reproducing the PL strongly depends on the initial conditions. Although in all simulations the synoptic environment is favourable for PL development, with a strong low-level temperature gradient and an upper-level through, only the low-level atmospheric fields of three of the simulations lead to PL development through baroclinic instability. The two simulations that best captured the PL represent a PL deeper than the observed one, and they show higher temperature mean bias compared to the other simulations, indicating that the ocean surface fluxes may be too strong. In general, ERA5 has more skill than the simulations at reproducing the observed PL, but the CRCM6/GEM4 simulation with initialisation time closer to the genesis time of the PL reproduces quite well small scale features as low-level baroclinic instability during the PL development phase.


Assuntos
Modelos Climáticos , Modelos Teóricos , Canadá , Clima , Simulação por Computador
12.
Environ Monit Assess ; 195(10): 1164, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37676361

RESUMO

Climate change is creating an increase in temperatures, which is harming the quality of life of people all over the world, particularly those with minimal financial resources. While 30% of the world's population is now vulnerable to extreme heat, estimates show that ratio will rise to 74% in the next 20 years, according to forecasts. Using the UrbClim climate model, this study examines the space-time variability of the heat stress index (HI) in different local climate zones (LCZs), as well as how heat wave conditions might affect this index based on land use and land cover. To that end, Seville, in Southern Spain, was investigated during the summer of 2017, when it had four heat waves. The following indices were considered for each urban sub-area: Normalized Difference Vegetation, Proportion Vegetation, Normalized Difference Built, and Urban Index. The goal is to conduct a statistical analysis of the link between the aforementioned elements and the heat stress index in order to recommend mitigation and resilience techniques. Our findings showed that compact and industrial LCZs (2, 3, and 10) are less resistant to HI than open and rural regions (5, 6, B, D, and G), which are more resistant to HI due to higher vegetation rates. The heat wave condition exacerbates the HI in all LCZs. As a result, initiatives such as enhancing open space, increasing green space, or using green roofs and façades might alleviate heat stress and improve people's quality of life.


Assuntos
Modelos Climáticos , Transtornos de Estresse por Calor , Humanos , Qualidade de Vida , Espanha , Monitoramento Ambiental , Mudança Climática
13.
Ann N Y Acad Sci ; 1529(1): 101-108, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37715781

RESUMO

This study assessed the projected near-surface wind speed (SWS) changes and variability over the Iberian Peninsula for the 21st century. Here, we compared Coupled Model Intercomparison Project Phase 6 global climate models (GCMs) with a higher spatial resolution regional climate model (RCM; ∼20 km), known as WRF-CESM2, which was created by a dynamic downscaling of the Community Earth System Model version 2 (CESM2) using the Weather Research and Forecasting (WRF) model. Our analysis found that the GCMs tended to overestimate observed SWS for 1985-2014, while the higher spatial resolution of the WRF-CESM2 did not improve the accuracy and underestimated the SWS magnitude. GCMs project a decline of SWS under high shared socioeconomic pathways (SSPs) greenhouse concentrations, such as SSP370 and SSP585, while an interdecadal oscillation appears in SSP126 and SSP245 for the end of the century. The WRF-CESM2 under SSP585 predicts the opposite increasing SWS. Our results suggest that 21st-century projections of SWS are uncertain even for regionalized products and should be taken with caution.


Assuntos
Cinarizina , Modelos Climáticos , Humanos , Vento , Incerteza , Tempo (Meteorologia) , Mudança Climática
14.
Nature ; 623(7985): 83-89, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37758952

RESUMO

Intense tropical cyclones (TCs), which often peak in autumn1,2, have destructive impacts on life and property3-5, making it crucial to determine whether any changes in intense TCs are likely to occur. Here, we identify a significant seasonal advance of intense TCs since the 1980s in most tropical oceans, with earlier-shifting rates of 3.7 and 3.2 days per decade for the Northern and Southern Hemispheres, respectively. This seasonal advance of intense TCs is closely related to the seasonal advance of rapid intensification events, favoured by the observed earlier onset of favourable oceanic conditions. Using simulations from multiple global climate models, large ensembles and individual forcing experiments, the earlier onset of favourable oceanic conditions is detectable and primarily driven by greenhouse gas forcing. The seasonal advance of intense TCs will increase the likelihood of intersecting with other extreme rainfall events, which usually peak in summer6,7, thereby leading to disproportionate impacts.


Assuntos
Tempestades Ciclônicas , Aquecimento Global , Oceanos e Mares , Estações do Ano , Clima Tropical , Modelos Climáticos , Tempestades Ciclônicas/estatística & dados numéricos , Aquecimento Global/estatística & dados numéricos , Gases de Efeito Estufa/efeitos adversos , Chuva , Fatores de Tempo
15.
Nature ; 622(7982): 301-307, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37648861

RESUMO

According to twenty-first century climate-model projections, greenhouse warming will intensify rainfall variability and extremes across the globe1-4. However, verifying this prediction using observations has remained a substantial challenge owing to large natural rainfall fluctuations at regional scales3,4. Here we show that deep learning successfully detects the emerging climate-change signals in daily precipitation fields during the observed record. We trained a convolutional neural network (CNN)5 with daily precipitation fields and annual global mean surface air temperature data obtained from an ensemble of present-day and future climate-model simulations6. After applying the algorithm to the observational record, we found that the daily precipitation data represented an excellent predictor for the observed planetary warming, as they showed a clear deviation from natural variability since the mid-2010s. Furthermore, we analysed the deep-learning model with an explainable framework and observed that the precipitation variability of the weather timescale (period less than 10 days) over the tropical eastern Pacific and mid-latitude storm-track regions was most sensitive to anthropogenic warming. Our results highlight that, although the long-term shifts in annual mean precipitation remain indiscernible from the natural background variability, the impact of global warming on daily hydrological fluctuations has already emerged.


Assuntos
Modelos Climáticos , Aprendizado Profundo , Aquecimento Global , Atividades Humanas , Redes Neurais de Computação , Chuva , Temperatura , Tempo (Meteorologia) , Clima Tropical , Oceano Pacífico , Hidrologia , Aquecimento Global/estatística & dados numéricos
16.
Nature ; 621(7980): 760-766, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648863

RESUMO

California has experienced enhanced extreme wildfire behaviour in recent years1-3, leading to substantial loss of life and property4,5. Some portion of the change in wildfire behaviour is attributable to anthropogenic climate warming, but formally quantifying this contribution is difficult because of numerous confounding factors6,7 and because wildfires are below the grid scale of global climate models. Here we use machine learning to quantify empirical relationships between temperature (as well as the influence of temperature on aridity) and the risk of extreme daily wildfire growth (>10,000 acres) in California and find that the influence of temperature on the risk is primarily mediated through its influence on fuel moisture. We use the uncovered relationships to estimate the changes in extreme daily wildfire growth risk under anthropogenic warming by subjecting historical fires from 2003 to 2020 to differing background climatological temperatures and aridity conditions. We find that the influence of anthropogenic warming on the risk of extreme daily wildfire growth varies appreciably on a fire-by-fire and day-by-day basis, depending on whether or not climate warming pushes conditions over certain thresholds of aridity, such as 1.5 kPa of vapour-pressure deficit and 10% dead fuel moisture. So far, anthropogenic warming has enhanced the aggregate expected frequency of extreme daily wildfire growth by 25% (5-95 range of 14-36%), on average, relative to preindustrial conditions. But for some fires, there was approximately no change, and for other fires, the enhancement has been as much as 461%. When historical fires are subjected to a range of projected end-of-century conditions, the aggregate expected frequency of extreme daily wildfire growth events increases by 59% (5-95 range of 47-71%) under a low SSP1-2.6 emissions scenario compared with an increase of 172% (5-95 range of 156-188%) under a very high SSP5-8.5 emissions scenario, relative to preindustrial conditions.


Assuntos
Aquecimento Global , Temperatura , Incêndios Florestais , California , Modelos Climáticos , Secas/estatística & dados numéricos , Aquecimento Global/estatística & dados numéricos , Atividades Humanas , Umidade , Aprendizado de Máquina , Medição de Risco , Incêndios Florestais/estatística & dados numéricos , Humanos
17.
Nature ; 621(7978): 330-335, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37587345

RESUMO

Projected responses of ocean net primary productivity to climate change are highly uncertain1. Models suggest that the climate sensitivity of phytoplankton nutrient limitation in the low-latitude Pacific Ocean plays a crucial role1-3, but this is poorly constrained by observations4. Here we show that changes in physical forcing drove coherent fluctuations in the strength of equatorial Pacific iron limitation through multiple El Niño/Southern Oscillation (ENSO) cycles, but that this was overestimated twofold by a state-of-the-art climate model. Our assessment was enabled by first using a combination of field nutrient-addition experiments, proteomics and above-water hyperspectral radiometry to show that phytoplankton physiological responses to iron limitation led to approximately threefold changes in chlorophyll-normalized phytoplankton fluorescence. We then exploited the >18-year satellite fluorescence record to quantify climate-induced nutrient limitation variability. Such synoptic constraints provide a powerful approach for benchmarking the realism of model projections of net primary productivity to climate changes.


Assuntos
Modelos Climáticos , El Niño Oscilação Sul , Ferro , Clorofila/metabolismo , Mudança Climática , Fluorescência , Ferro/metabolismo , Nutrientes/metabolismo , Oceano Pacífico , Fitoplâncton/metabolismo , Proteômica , Radiometria , Imagens de Satélites
18.
Nature ; 622(7981): 93-100, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37612511

RESUMO

The Pacific Walker circulation (PWC) has an outsized influence on weather and climate worldwide. Yet the PWC response to external forcings is unclear1,2, with empirical data and model simulations often disagreeing on the magnitude and sign of these responses3. Most climate models predict that the PWC will ultimately weaken in response to global warming4. However, the PWC strengthened from 1992 to 2011, suggesting a significant role for anthropogenic and/or volcanic aerosol forcing5, or internal variability. Here we use a new annually resolved, multi-method, palaeoproxy-derived PWC reconstruction ensemble (1200-2000) to show that the 1992-2011 PWC strengthening is anomalous but not unprecedented in the context of the past 800 years. The 1992-2011 PWC strengthening was unlikely to have been a consequence of volcanic forcing and may therefore have resulted from anthropogenic aerosol forcing or natural variability. We find no significant industrial-era (1850-2000) PWC trend, contrasting the PWC weakening simulated by most climate models3. However, an industrial-era shift to lower-frequency variability suggests a subtle anthropogenic influence. The reconstruction also suggests that volcanic eruptions trigger El Niño-like PWC weakening, similar to the response simulated by climate models.


Assuntos
Movimentos do Ar , Atmosfera , Clima , Tempo (Meteorologia) , Aerossóis/análise , Atmosfera/química , Modelos Climáticos , El Niño Oscilação Sul , Aquecimento Global , História do Século XIX , História do Século XX , História do Século XXI , Atividades Humanas , Oceano Pacífico , Erupções Vulcânicas
19.
Nature ; 620(7972): 97-103, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532816

RESUMO

Earth system models and various climate proxy sources indicate global warming is unprecedented during at least the Common Era1. However, tree-ring proxies often estimate temperatures during the Medieval Climate Anomaly (950-1250 CE) that are similar to, or exceed, those recorded for the past century2,3, in contrast to simulation experiments at regional scales4. This not only calls into question the reliability of models and proxies but also contributes to uncertainty in future climate projections5. Here we show that the current climate of the Fennoscandian Peninsula is substantially warmer than that of the medieval period. This highlights the dominant role of anthropogenic forcing in climate warming even at the regional scale, thereby reconciling inconsistencies between reconstructions and model simulations. We used an annually resolved 1,170-year-long tree-ring record that relies exclusively on tracheid anatomical measurements from Pinus sylvestris trees, providing high-fidelity measurements of instrumental temperature variability during the warm season. We therefore call for the construction of more such millennia-long records to further improve our understanding and reduce uncertainties around historical and future climate change at inter-regional and eventually global scales.


Assuntos
Mudança Climática , Pinus , Temperatura , Árvores , Mudança Climática/história , Mudança Climática/estatística & dados numéricos , Aquecimento Global/história , Aquecimento Global/estatística & dados numéricos , Reprodutibilidade dos Testes , Árvores/anatomia & histologia , Árvores/crescimento & desenvolvimento , História Medieval , História do Século XXI , Modelos Climáticos , Incerteza , Pinus/anatomia & histologia , Pinus/crescimento & desenvolvimento , Internacionalidade
20.
Nature ; 620(7973): 336-343, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37558848

RESUMO

Anthropogenic climate change is predicted to severely impact the global hydrological cycle1, particularly in tropical regions where agriculture-based economies depend on monsoon rainfall2. In the Horn of Africa, more frequent drought conditions in recent decades3,4 contrast with climate models projecting precipitation to increase with rising temperature5. Here we use organic geochemical climate-proxy data from the sediment record of Lake Chala (Kenya and Tanzania) to probe the stability of the link between hydroclimate and temperature over approximately the past 75,000 years, hence encompassing a sufficiently wide range of temperatures to test the 'dry gets drier, wet gets wetter' paradigm6 of anthropogenic climate change in the time domain. We show that the positive relationship between effective moisture and temperature in easternmost Africa during the cooler last glacial period shifted to negative around the onset of the Holocene 11,700 years ago, when the atmospheric carbon dioxide concentration exceeded 250 parts per million and mean annual temperature approached modern-day values. Thus, at that time, the budget between monsoonal precipitation and continental evaporation7 crossed a tipping point such that the positive influence of temperature on evaporation became greater than its positive influence on precipitation. Our results imply that under continued anthropogenic warming, the Horn of Africa will probably experience further drying, and they highlight the need for improved simulation of both dynamic and thermodynamic processes in the tropical hydrological cycle.


Assuntos
Mudança Climática , Modelos Climáticos , Secas , Chuva , Temperatura , Ciclo Hidrológico , Água , Atmosfera/química , Dióxido de Carbono/análise , Mudança Climática/história , Secas/estatística & dados numéricos , Sedimentos Geológicos/química , História Antiga , Umidade , Quênia , Lagos/química , Tanzânia , Termodinâmica , Clima Tropical , Volatilização , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...